top of page
markvasat

Monitoring Synchronous Power Generators with NI CompactDAQ

*As Featured on NI.com

Original Authors: Nemanja Milojčić, Electrical Engineering Institute "NIKOLA TESLA"

Edited by Cyth Systems

Thermal power plants.
Synchronous power generators - thermal power plant.

The Challenge

Automating the monitoring and analysis of an excitation system and generator used in thermal power plants.


The Solution

Using NI LabVIEW software and NI CompactDAQ hardware to develop a flexible, fully functional, and easy-to-use power plant excitation monitoring system.


In modern power systems, the main sources of electrical energy are synchronous generators. The power of the generators ranges from a few kilowatts in a small power plant to upwards of 1.5 GW in modern thermal plants. Synchronous generators are used in any and all types of power generation settings ranging from hydro to steam turbines located in thermal and nuclear power plants.


An excitation system exists at the heart of every synchronous power generation machine. In principle, an excitation system includes the regulated source of direct current needed to form an excitation electromagnetic field, which produces a voltage at the generator’s terminals, in a synchronous machine. It is crucial for scientists and operators to monitor, record, analyze, and study the transient processes that can occur during power production in these systems.

The NI CompactDAQ integrated into the control cabinet.
The NI CompactDAQ integrated into the control cabinet.

As a designer and manufacturer of complete excitation systems for synchronous generators, the Electrical Engineering Institute Nikola Tesla implemented a solution to monitor the behavior of our system and generator to determine the precise response of our excitation system and generator during normal operations and when failures occur. Using data acquisition systems that are independent of all control signals in excitation systems allows for experimentation without endangering primary equipment and normal plant processes.

Hardware and Software Configuration

We built the monitoring system with NI data acquisition modules on an NI CompactDAQ platform. The main elements include the NI cDAQ-9172 chassis, an NI 9203 analog input module, an NI 9245 digital input module, an industrial 15 in. touch panel PC, and signal conditioning equipment. In addition, we selected LabVIEW graphical system design software for its ease of use and seamless integration with NI cDAQ hardware.

We built our rack with isolated voltage and current sensors for signal conditioning equipment. We also conditioned the voltage and current signals so that output signals would be within voltage levels suitable for NI ctDAQ analog input modules. The main goals during the application development process were to retain linearity in the range of measurements and acquire signals within 10 kHz bandwidth. We took digital input signals from I/O relays in a relay scheme of the excitation system control cubicle. Figure 1 demonstrates the control cubicle with NI cDAQ equipment and Figure 2 presents the software front panel for the system at the Nikola Tesla A plant in Obrenovac, Serbia.


We programmed the application using LabVIEW, which provides a real-time view of the entire system on a primary screen and a live view of all analog values displayed as VIs. LabVIEW also provided the flexibility to display all analog signals in a graph and record them on demand and on an external trigger. The system allows the operator to easily review recorded analog signals, adjust the triggering conditions, view all digital inputs in real-time, and monitor changes.

We implemented our first monitoring system in the Nikola Tesla A thermal power plant on the new excitation system for generator No. 4 (308 MW). We installed a second monitoring system on a new excitation system for generator No. 1 (348 MW) in the Kostolac B thermal plant in Kostolac and plan to implement a third system in the Potpec hydro plant in Priboj for generator B (20 MW).

Continued System Development

The most recent addition to our NI CompactDAQ system involves the ability to monitor two important subsystems in the power plant: the generator synchronizer and a device for automatic reconnection of the power plant 6 kV self-supply. The system ensures that all relevant signals are recorded in every generator synchronization process as well as when changes occur in the 6 kV busbar system.

Future system plans include linking communication of our NI CompactDAQ monitoring system with supervisory control and data acquisition (SCADA) power plant control equipment and the ability to access all measurement data remotely via an Ethernet connection. Overall, the monitoring system based on NI hardware and software proved to be a highly flexible and easy-to-use solution for our application.

Original Authors:

Edited by Cyth Systems




Comments


bottom of page