top of page

Bioreactor Controlled by Circaflex Cultivates Cell Culture Growth


3-liter bioreactor featuring a Circaflex embedded control system
3-liter bioreactor featuring a Circaflex embedded control system

The Challenge


A designer and manufacturer of complex biopharmaceutical devices approached us with the need for a system to control and monitor the function of their bioreactors.


The Solution


Using our embedded control system Circaflex paired with the NI Single-Board RIO, we designed a system to control and monitor all essential bioreactor electrical, mechanical, and sensor components that enable a streamlined cell culture process.


The Story//The Cyth Process


A developer and manufacturer of self-contained bioreactor systems used for biopharmaceutical research approached us with the need for a system to control and monitor the function of their bioreactors. A bioreactor is a sealed vessel that supports the growth of cell cultures, viruses, and tissues. The bioreactor’s control system regulates all aspects of the vessel’s environment including temperature, moisture, pH level, and chemical treatments. The bioreactor’s advanced features and ability to accurately control and change these environmental factors makes it a formidable industry competitor for cell culture, virus, and tissue growth needed at research and testing laboratories.


The client’s bioreactor consists of a metal housing that contains a sealed polyurethane vessel with a coupling system used to drive its Vertical-Wheel. This system controls the mixing speed of the vessel’s liquid contents. This liquid agitation control allows for the coalescence of sensitive cells and provides the optimum conditions required for the cell culturing process. The bioreactor also possesses a mass flow controller which oxygenates the liquid contents with extremely high precision. The Vertical-Wheel's ability to control the fluid mixing coupled with the mass flow controller allows our client to provide a premium environment for cell growth for cell and gene research development.

Bacterial sediment
Bacterial sediment

Moving left to right these images show how the bacterial sediment (in blue accrued at the bottom) is stirred by the Vertical Wheel, and how at speeds of 20 rpm the bacterial content is fully mixed into the liquid.


Our engineering team began by using Circaflex to build a control system capable of acquiring multiple sensor inputs and outputs while controlling devices critical to the bioreactor’s function. These sensors and devices include:

  • pH level sensors

  • Carbon and oxygen level sensors

  • Temperature sensors

  • Peristaltic pumps

  • Stepper motors

  • Mass flow (gas release) valves

  • Fluid flow control valves

Our engineering team was able to read all these sensors to provide high-speed I/O to control the device using Cyth’s Circaflex platform paired with the NI Single-Board RIO. The NI sbRIO was incorporated into the design to provide a high level of configurability and expandability for our client’s development team. The client was able to program PID control loop algorithms which continually monitored the Vertical-Wheel’s speed for real-time adjustments. Our development team used LabVIEW to build a feedback loop architecture. We worked alongside the client's engineering team to provide a self-contained board and a programming architecture that minimized development time and costs to accelerate the product’s path to market. The ease of Circaflex’s hardware configuration and LabVIEW’s software development allowed us to fast-track the build process to have an initial prototype built in weeks and a final product ready for deployment within three months.

Circaflex
The Circaflex control system is used for the client’s bioreactor series.

Overcoming the Obstacles


Our team’s largest obstacle was designing a control system that could be applied to all models of the client’s bioreactor. The client designed four different bioreactor models which all required the same control system, so our team designed a board with the ability to scale to whatever I/O count the client’s particular model needed. For example, our client makes both a 3-liter benchtop bioreactor the size of a briefcase and an 80-liter bioreactor the size of a refrigerator. The Circaflex and NI sbRIO paired control boards remained the same, but the number of thermocouples and other sensors needed to support these separate models had to be different. This required, for example, an additional thermocouple module to be added to the Circaflex board to have a scalable number of channels, allowing the client to plug in as many as they required.

Bioreactor
The client’s 80-liter bioreactor features Cyth’s scalable Circaflex control system.

Delivering the Outcome


Our engineering team designed a system of two Circaflex boards to provide all essential bioreactor electrical and mechanical components that enable a streamlined cell culture process. By using the Circaflex platform paired with the NI Single-Board RIO we were able to create a system that provided the high-speed communication and scalability our client required to control all sensor I/O and devices contained in their bioreactors. By programming the control system in LabVIEW RT and LabVIEW FPGA, the client’s device was designed to provide real-time feedback on the Vertical-Wheel's speed and the environmental variables inside the bioreactor’s vessel. Overall, by collaborating with the client’s engineering team our team was able to provide proven machine control architectures for them to incorporate their custom algorithms quickly and reliably which accelerated their path to market.


Technical Specifications


1 x Circaflex Board

1 x Client Mezzanine Board

1 x NI SingleBoard RIO – 9641

1 x Industrial PC

2 x Magnetic Door Lock Solenoid

4 x Pinch Valve

4 x DIN Rail Mounted SSR Relays (for driving high current heaters)



Circaflex Modules


4 x Stepper Drive

1 x pH Modules

1 x Carbon, Oxygen, and Nitrogen Level Sensor Modules

1 x Temperature Module

1 x Mass flow (gas release valve) Control Module

1 x Fluid flow control module





bottom of page